menu ☰
menu ˟

Geographical and climatic gradients of evergreen versus deciduous broad-leaved tree species in subtropical China: Implications for the definition of the mixed forest

14 Apr 2017

Abstract

Understanding climatic influences on the proportion of evergreen versus deciduous broad-leaved tree species in forests is of crucial importance when predicting the impact of climate change on broad-leaved forests. Here, we quantified the geographical distribution of evergreen versus deciduous broad-leaved tree species in subtropical China. The Relative Importance Value index (RIV) was used to examine regional patterns in tree species dominance and was related to three key climatic variables: mean annual temperature (MAT), minimum temperature of the coldest month (MinT), and mean annual precipitation (MAP). We found the RIV of evergreen species to decrease with latitude at a lapse rate of 10% per degree between 23.5 and 25°N, 1% per degree at 25–29.1°N, and 15% per degree at 29.1–34°N. The RIV of evergreen species increased with: MinT at a lapse rate of 10% per °C between −4.5 and 2.5°C and 2% per °C at 2.5–10.5°C; MAP at a lapse rate of 10% per 100 mm between 900 and 1,600 mm and 4% per 100 mm between 1,600 and 2,250 mm. All selected climatic variables cumulatively explained 71% of the geographical variation in dominance of evergreen and deciduous broad-leaved tree species and the climatic variables, ranked in order of decreasing effects were as follows: MinT > MAP > MAT. We further proposed that the latitudinal limit of evergreen and deciduous broad-leaved mixed forests was 29.1–32°N, corresponding with MAT of 11–18.1°C, MinT of −2.5 to 2.51°C, and MAP of 1,000–1,630 mm. This study is the first quantitative assessment of climatic correlates with the evergreenness and deciduousness of broad-leaved forests in subtropical China and underscores that extreme cold temperature is the most important climatic determinant of evergreen and deciduous broad-leaved tree species’ distributions, a finding that confirms earlier qualitative studies. Our findings also offer new insight into the definition and distribution of the mixed forest and an accurate assessment of vulnerability of mixed forests to future climate change.

We found the extreme cold temperature was the major climatic determinant of evergreen and deciduous broad-leaved tree species’ distributions. We proposed that the Relative Importance Value index (RIV) as a quantitative indicator of the relative dominance of evergreen and deciduous broad-leaved tree species in the mixed forests and the cutoff level between the mixed forest and evergreen (or deciduous) broad-leaved forests corresponded to 25%–75% RIV. Our analysis resolves the long-standing questions regarding limitations to mixed forest distributions and provides a basis for assessment of vulnerability of the forest biomes to future climate change.

Click here to view the full article which appeared in Ecology and Evolution

IPH Logo